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Quantitative structure–activity relationship (QSAR) study of 19-nor-testosterone steroids family was per-
formed using quantum and physicochemical molecular descriptors. The quantum–chemical descriptors
were calculated using semiempirical calculations. The descriptor values were statistically correlated using
multi-linear regression analysis. The QSAR study indicated that the electronic properties of these deriva-
tives have significant relationship with observed biological activities. The found QSAR equations explain
nabolic activity
ndrogenic activity
uantum molecular descriptor
hysicochemical molecular descriptor
uantitative structure–activity relationship
estosterone family and cluster analysis

that the energy difference between the LUMO and HOMO, the total dipole moment, the chemical potential
and the value of the net charge of different carbon atoms in the steroid nucleus showed key interaction of
these steroids with their anabolic–androgenic receptor binding site. The calculated values predict that the
17�-cyclopropyl-17�, 3�-hydroxy-4-estrene compound presents the highest anabolic–androgenic ratio
(AAR) and the 7�-methyl-17�-acetoxy-estr-4-en-3-one compound the lowest AAR. This study might be
helpful in the future successful identification of “real” or “virtual” anabolic–androgenic steroids.
. Introduction

Anabolic/androgenic steroids (AAS) exert two different effects:
evelopment and maintenance of secondary male sexual char-
cteristics (androgenic effects) and promotion of muscle growth
anabolic effects) [1]. These drugs are used in the fast recovery
rom protein-wasting disorders. In HIV patients, anabolic steroids
re used to regain lean muscle mass, as well as to prevent organ
ailure and secondary immune dysfunction [2]. These compounds
ave proved to be an effective oral therapy to promote weight gain
fter extensive surgery, chronic infections and severe trauma [3].
hey are indicated in the treatment of anemia caused by deficient
ed-cell production [4], osteoporosis [5] and metastatic cancer [6].

Generally, testosterone is considered to be a poor AAS because,
hen orally taken, it is rapidly degraded, and only small amounts

each the systemic circulation. Additionally, when testosterone is

njected, effective levels of the drug are not sustained because of
apid degradation [7]. In order to maximize the effectiveness of AAS,
he basic chemical structure of testosterone is generally modified
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by (I) esterification at the 17�-hydroxyl group, (II) alkylation at the
17 �-position, or (III) modification in any of the 1, 2, 9, or 11 carbon
of the ring structure in the molecule (see Fig. 1) [7].

Family of 19-nor-testosterone is produced by the removal of the
19 methyl group of testosterone (see Fig. 1). This change increases
the anabolic effect. The 19-nor-testosterone is more planar than
testosterone, increasing its receptor-binding affinity. However, it
binds with similar affinity to androgen receptors in skeletal muscle
and in prostate. The 19-nor-testosterone is not converted to dihy-
drotestosterone (DHT) in tissues containing 5�-reductase enzyme.
Instead, it is converted to dihydro-19-nor-testosterone that is a
compound that binds less tightly to androgen receptor in the same
way that the DHT. These factors could explain the diminished effect
of 19-nor-testosterone relative to testosterone on androgen tar-
get tissues containing 5�-reductase enzyme (e.g., seminal vesicles)
together with a greater effect than testosterone on tissues contain-
ing little or none of this enzyme, e.g., levator ani and skeletal muscle
[8].

In an attempt to meet these goals many AAS drugs have been

created with various levels of success. However, there is no AAS
developed to date that contains a pronounced anabolic potency,
while having no androgenic effect [9]. It is important to note that
with the creation of new AAS, subsequent modifications result in

dx.doi.org/10.1016/j.jsbmb.2011.04.003
http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:garcia.delavega@uam.es
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Fig. 1. Three types of modifications of testosterone used to produce AAS. Modifica-
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ion I: esterification at the 17�-hydroxyl group. Modification II: alkylation at the 17
-position. Modification III: modification in any of the 1, 2, 9, or 11 carbon atoms in

he steroid nucleus.

lterations in the drug’s anabolic to androgenic ratio and modify
he potential side effects that could occur in response to the drug.
n integrating both measures, the anabolic index, which relates the
atio of anabolic to androgenic response for a given steroid, is used.
f the anabolic index is higher than one, it indicates a higher trend
owards anabolic effect and, therefore, classifies the drug as an
nabolic steroid. A measure lower than one, in turn, assesses the
teroid as androgenic [10].

Several authors have developed QSAR models for estrogens
11], progestagens [12], and corticosteroid [13] steroid hormones.
he steroid benchmark with the corresponding globulin affin-
ty is the most extensively studied dataset of steroids [14–18].
ecently, we reported multi-linear regression (MLR) QSAR mod-
ls for congeneric series of AAS: 17�-hydroxy-5�-androstane
19], 4,5�-dihydrotestosterone [20] and testosterone [21] steroid
amilies. We reported too a robust biosilico model of linear dis-
riminant analysis (LDA) [22]. This model was used to analyze the
nabolic–androgenic activities of structurally diverse steroids and
o discover novel AAS, as well as to give a structural interpreta-
ion of their AAR. We have selected 366 steroids with a structural
ariability and included four different steroids families: 17�-
ydroxy-5�-androstane, 4,5�-dyhidrotestosterone, testosterone
nd 19-nor-testosterone derivatives [23]. The general idea of our
ork is to develop general models of classification for steroids with
igh and moderate-low anabolic–androgenic ratio (AAR). Subse-
uently, we quantify their anabolic and/or androgenic activities

n the models of MLR according to the family that each selected
olecule belong to. Finally, our approach could help in the future

uccessful identification of “real” or “virtual” AAS.
The main aim of the present report is to develop MLR QSAR mod-

ls for anabolic and androgenic steroids of the 19-nor-testosterone
teroids family using quantum and physicochemical MDs and a
enetic algorithm (GA) as a method for the selection of the best set
f variables. The QSAR models provide a structural interpretation of
heir anabolic–androgenic activities and design new anabolic and
ndrogenic steroids.

. Methods

.1. The studied compounds and their biological activity data

In the present work, logarithm of the inverse of biological
ctivity was used in order to establish QSAR equations. It was
aken from literature a data set of 26 compounds derived from
9-nor-testosterone steroids family with anabolic and androgenic
ctivities determined in vivo. In pharmacological activity determi-

ation were used thirty male Wistar rats (21 ± 23 days old, body
eight: 50–90 g) maintained seven days with food and water avail-

ble ad libitum. In the determination of the anabolic and androgenic
ctivities, researchers isolated three organs from each rat: the semi-
mistry & Molecular Biology 126 (2011) 35–45

nal vesicle (SV), the ventral prostate (VP), and the levator ani muscle
(LA) [22].

These organs were all weighted and a comparison between the
active groups and the placebo groups was made. The differences in
weight of the seminal vesicles and the ventral prostates represent
the androgenic activity, while the difference in weight of the lev-
ator ani muscle between the control and active group represents
the anabolic activity [22]. The experimental values of these biolog-
ical activities and molecular structures for all steroids are shown in
Table 1 and Fig. 2, respectively.

The data set was divided randomly into three training sets
(n = 21, 80% of the data): (1) steroids with anabolic activity,
expressed by log (1/LA); (2) steroids with androgenic activity,
expressed by log (1/VP) and by log (1/SV) and (3) AAR values,
expressed by [log (1/LA)/log(1/VP)] and [log (1/LA)/log(1/SV)]. The
predictive ability of each model was then evaluated by test sets
including the remaining steroids (n = 5, 20% of data): (1) test set for
anabolic activity; (2) test set for androgenic activity and (3) test set
for AAR. The experimental values of AAR were quantified using the
anabolic and both androgenic activities values shown in Table 1.

2.2. Calculated 2D-descriptors

A large number of MDs are usually used in QSAR methods
[24]. The specific biological action of drugs is frequently described
by hydrophobic, electronic and steric properties. The hydropho-
bic properties express the ability of a molecule to be transported
through the organism in order to interact with biological mem-
branes and to be bound to the receptor by van der Waals forces.
We considered as hydrophobic descriptor the logarithm of the
octanol–water partition coefficient (log P) [25]. Electronic and steric
properties characterize the pharmacodynamic properties in the
ligand–receptor interaction. They define the ability of the drug to
join the receptor [26]. Calculated electronic descriptors by quan-
tum mechanical procedures were: hydration energy (EH2O) [27],
polarizability (P) [28], the total dipole moment (�) of the molecule,
electronic energy (E), total energy (ET), HOMO (highest occupied
molecular orbital) eigenvalue, LUMO (lowest unoccupied molecu-
lar orbital) eigenvalue, energy difference between the LUMO and
HOMO (�EL–H), net atomic charges of C atoms 1–17 in the steroid
backbone (q1–q17), chemical hardness (�), softness (S), chemi-
cal potential (U) and electrophilicity index (ω) [29,30]. Electronic
descriptors were calculated with the parametric method 3 (PM3)
semi-empirical Hamiltonian [31] after the full geometrical opti-
mization of each molecule using MOPAC 6 software [32]. The steric
properties analyses were: approximate surface area (ASA), grid sur-
face area (GSA) [33], molar volume (MV) and molar refractivity
(MR) [34]. The MDs calculated in the present work and that were
included in QSAR models are given in Table 2. Correlations among
physicochemical parameters are listed in Table 3.

2.3. Statistical analysis

The BuildQSAR software [35] was employed to perform vari-
able selection and QSAR modeling. The mutation probability was
specified as 35%. The length of the equations was set for three or
four terms (according to the models sought-after) and a constant.
The population size was set to 100. The GA with an initial popula-
tion size of 100 rapidly converged (200 generations) and reached
an optimal QSAR model in a reasonable number of GA generations
[36–38]. The search for the best model can be processed in terms

of the highest determination coefficient (R2), F-test value, p-value
(p < 0.01) and the lowest standard deviation (s) [39]. The validity
of model was examines using the leave-one-out cross validated
procedure. From this procedure, we define the predictive squared
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Table 1
Numbering of the steroidal backbone as well as the experimental values of anabolic and androgenic activities for 19-nor-testosterone derivatives.

1

2

3

4
5

6
7

8
9

10

11

12

13

14
15

16

17

18

A B

C D19

.

Compounda log (1/LA)b log (1/VP)c log (1/SV)c

1. 19-Nor-testosterone 2.10 1.70 1.70
2. 19-Nor-testosterone-propionate 1.94 1.79 1.79
3. 17�-Methyl-19-nortestosterone 1.95 1.93 1.93
4. 17�-Ethynyl-19-nortestosterone 1.60 0.48 0.48
5. 17�-Ethyl-17�-hydroxyestr-4-ene 2.30 1.60 1.60
6. 7�-Methyl-17�-acetoxy-estr-4-en-3-one 2.22 2.22 2.22
7. 7�,17�-Dimethyl-17�-hydroxyestr-4-en-3-one 2.51 2.34 2.34
8. 4-Chloro-17�-methyl-17�-hydroxyestr-4-en-3-one 1.85 1.40 1.40
9. 4-Chloro-17�-methyl-17�-propionoxyestr-4-en-3-one 1.85 1.15 1.15
10. 4-Chloro-17�-acetoxyestr-4-en-3-one 1.89 0.48 0.48
11. Estr-4-en-3,17-dione 1.76 1.65 1.65
12. 7�-Methylestr-4-en-3,17-dione 2.09 2.08 2.08
13. 16�-Methyl-17�-hydroxy-estr-4-en-3-one 1.60 1.00 1.00
14. 2�-Methyl-17�-hydroxy-5�-estran-3-one 1.15 0.85 0.85
15. 17�-methyl-3�,17�-dihydroxyestr-5-ene 2.85 1.70 1.70
16. 17�-Ethyl-3�,17�-dihydroxyestr-5-ene 2.60 1.30 1.30
17. 17�-Hydroxy-5�-estr-2-ene 1.30 0.30 0.30
18. 17�-Acetoxy-�4-estreno[2,3-d] isoxazole 1.90 1.00 1.00
19. 6�-Methyl-17�-hydroxy-estr-4-en-3-one 1.41 1.23 1.23
20. 17�-Hydroxy-estra-4,9(10)-dien-3-one 2.00 1.00 1.00
21. 17�-Methyl-17�-hydroxy-estra-4,9(10)-dien-3-one 2.11 1.48 1.48
22. 17�-Ethyl-17�-hydroxyestra-4,9(10)-dien-3-one 2.00 1.00 1.00
23. 17�-Acetoxyestra-4,9,11-trien-3-one 2.70 2.70 2.70
24. 17�-Methoxy-methyloxyestra-4,9,11-trien-3-one 3.30 3.30 3.30
25. 17�-Hydroxyestra-4,9,11-trien-3-on-17-n-undecanoate 2.70 2.70 2.70
26. 17�-Cyclopropyl-17�,3�-hydroxy-4-estrene 1.70 0.78 0.78

a Structure of compound give in Fig. 2.
b Anabolic activity expressed by the inverse logarithm of the levator ani muscle (LA) weight.
c Androgenic activity expressed by the inverse logarithm of the ventral prostate (VP) and seminal vesicle (SV) weights, respectively.

Table 2
Quantum and physicochemical parameters values included in the QSAR models for steroids in database.

Compounda �EL–H
b q6 q7 q9 q11 q12 q13 Uc

1 9.99 −0.07 −0.09 −0.07 −0.11 −0.08 −0.05 −5.09
2 10.00 −0.07 −0.09 −0.07 −0.11 −0.08 −0.05 −5.16
3 9.99 −0.07 −0.09 −0.07 −0.11 −0.09 −0.04 −5.08
4 9.99 −0.07 −0.09 −0.07 −0.11 −0.09 −0.04 −5.08
5 10.46 −0.05 −0.09 −0.07 −0.11 −0.09 −0.04 −4.11
6 9.98 −0.07 −0.07 −0.08 −0.11 −0.08 −0.05 −5.14
7 9.97 −0.07 −0.07 −0.08 −0.11 −0.09 −0.04 −5.06
8 9.13 −0.08 −0.09 −0.07 −0.11 −0.09 −0.04 −4.88
9 9.13 −0.08 −0.09 −0.07 −0.11 −0.09 −0.04 −4.88

10 9.13 −0.08 −0.09 −0.07 −0.11 −0.08 −0.05 −4.95
11 10.00 −0.07 −0.09 −0.07 −0.11 −0.07 −0.10 −5.19
12 9.98 −0.07 −0.07 −0.08 −0.11 −0.07 −0.10 −5.17
13 10.00 −0.07 −0.09 −0.07 −0.11 −0.08 −0.08 −5.12
14 11.26 −0.10 −0.10 −0.07 −0.11 −0.08 −0.05 −4.75
15 10.46 −0.15 −0.06 −0.08 −0.11 −0.09 −0.04 −4.26
16 10.46 −0.15 −0.06 −0.08 −0.10 −0.09 −0.04 −4.25
17 10.75 -0.10 −0.10 −0.07 −0.11 −0.08 −0.05 −4.22
18 8.44 −0.06 −0.10 −0.07 −0.11 −0.09 −0.05 −4.87
19 10.00 −0.04 −0.10 −0.07 −0.11 −0.08 −0.05 −5.07
20 8.57 −0.07 −0.10 −0.07 −0.07 −0.08 −0.05 −4.80
21 8.56 −0.07 −0.10 −0.07 −0.07 −0.09 −0.04 −4.79
22 8.56 −0.07 −0.10 −0.07 −0.07 −0.09 −0.04 −4.79
23 8.06 −0.07 −0.10 −0.04 −0.12 −0.11 −0.03 −4.93
24 8.06 −0.07 −0.10 −0.04 −0.11 −0.12 −0.06 −4.89
25 8.05 −0.07 −0.10 −0.04 −0.12 −0.10 −0.03 −4.87
26 10.51 −0.06 −0.09 −0.07 −0.11 −0.09 −0.04 −4.36

a Number of these compounds and structures are given in Table 1 and Fig. 2, respectively.
b Energy difference between the LUMO and the HOMO. q, net atomic charges of carbons 6, 7, 9, 11, 12 and 13, respectively in the steroids backbone.
c Chemical potential.
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Fig. 2. The structures of the 19-nor-testoster

orrelation coefficient (q2) according to the following expression:

2 = 1 −
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(1)
here yi are the observed activities, ŷi are the estimates activities
y the models and ȳ is the average activity [40,41]. Many authors
onsider high q2 values (for instance, q2 > 0.5) as an indicator or
ven as the ultimate proof of the high predictive power of a par-
mily considered in the data set of this study.

ticular QSAR model [40,41]. Nevertheless, Golbraikh and Tropsha
have recently demonstrated that high values of q2 appear to be a
necessary, but not sufficient condition for the model to have a high
predictive power [42]. Therefore, in addition to this statistic value,
we also used an external prediction test set. This type of model vali-

dation is very important, if we take into account that the predictive
ability of a QSAR model can be estimated using only an external
test set of compounds (in the model range), which was not used to
build the model itself [43].
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.4. Clustering

One of the important applications in population study is clus-

er analysis (CA) based on similarity measurements. The clustering
roblem can be described as finding “natural groupings” in a set of
ata. This question actually involves two separate issues: how to

able 3
orrelation between quantum and physicochemical molecular descriptors included in th

�EL–H
a q6 q7 q

�EL–H
a 1 0.09 0.20 0

q6 1 0.33 0
q7 1 0
q9 1
q11

q12

q13

U

a Energy difference between the LUMO and the HOMO. q, net atomic charges of carbons
b Chemical potential.
nued).

measure the similarity between samples, and how to divide sets
of samples into clusters among a large number of data input. The
term CA currently encompasses a number of different classification

algorithms. Most popular algorithms are k-Mean cluster algorithms
(k-MCA) and Jarvis-Patrick (also known as k-nearest neighbor clus-
ter algorithm; k-NNCA) algorithms. The k-MCA use an exchange

e QSAR models.

9 q11 q12 q13 Ub

.39 0.08 0.33 0.04 0.06

.07 0.00 0.00 0.01 0.25

.36 0.03 0.05 0.01 0.02
0.06 0.48 0.05 0.01
1 0.00 0.00 0.02

1 0.23 0.05
1 0.15

1

6, 7, 9, 11, 12 and 13, respectively in the steroids backbone.
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Fig. 3. A dendrogram illustrating the results of the hierarchical k-NNCA of the set
of 26 steroids used in the training and prediction sets of the present work.
0 Y.M. Álvarez-Ginarte et al. / Journal of Steroid B

ethod to divide n data points into k groups (clusters) so that the
um of distances/dissimilarities among the objects within the same
luster is minimized. The k-mean approach requires knowing pre-
iously the number of clusters (k). In k-NNCA method, the user
ust specify the number of nearest neighbors, and the number of

eighbors in common to merge two objects [44]. In order to design
raining and test series and to demonstrate the structural diver-
ity of the present database, we carried out one of these kinds of
luster analyses (k-NNCA) for steroid series. The STATISTICA vs. 5.5,
oftware package [45] was used to develop the CA.

When the clusters are formed the distance among objects
molecules) can be measured by different types of distances.
he most straightforward way for computing distances between
bjects in multidimensional space is to compute Euclidean dis-
ances. They are computed as:

ij =

√√√√{
p∑

k−1

(xik − xjk)2

}
(2)

here xik is the value of variable xk for individual i and xjk is the
alue of some variable for individual j [46].

In addition, there are possibilities of computing various types
f distance measure as: square Euclidean distances, Metropolis
ity-block distances, Chebychev distance and power distances. In
ur work, we compute squared Euclidean distances. When each
bject (molecule) represents its own cluster, the distance between
hose objects are defined by the chosen distance measure. How-
ver, when several objects have been linked together, we have to
etermine the distance between those new clusters. In other words
e need a linkage or amalgamation rule to determine when two

lusters are sufficiently similar to be linked together. There are
umerous linkage rules that have been proposed: single linkage,
omplete linkage, unweighted pair-group average and weighted
air-group average [46].

. Results and discussion

.1. Construction of training and test sets using hierarchical
luster analyses

It is well known that the quality of a regression model is highly
ependent on the quality of the selected data set. The most critical
spect for constructing the training set is to warrant enough molec-
lar diversity on it. Taking this into account, we selected a data set
f 26 steroids (whit included both anabolic and androgenic activ-
ties) having a great structural variability. In order to demonstrate
he structural diversity of this data set, we performed a hierarchical
A of these chemicals [47].

The hierarchical clustering approach finds a hierarchy of objects
epresented by a number of MDs. The dendrogram given in Fig. 3,
sing the Euclidean distance (X-axis) and the complete linkage (Y-
xis), illustrates the results of the k-NNCA developed in this set. As
t can be seen in the dendrogram, there are a great number of differ-
nt subsets, which prove the molecular variability of the selected
hemicals in these databases.

It should be remarked that, recently, several authors have
eveloped a classification of steroids using CA [47]. However, this
nalysis has been presented only for the benchmark steroids with
he corresponding globulin affinity. A complete discussion of the
lustering is out of the context of the present study, but several
nteresting features should be noted. The compounds: [1–4], [6–14]

nd [19–25] are 19-nor-steroids with a carbonyl group (–C O) in
he atom 3 and a vinyl group (–C C–) in the atoms 4 and 5 (Fig. 2).

few relative easy instances, where the similarity is relatively
bvious, may be identified from direct inspection of the molecu-
Fig. 4. General algorithm used to design training and test sets throughout k-NNCA.

lar structures. The dendrogram should reflect this high logic-visual
similarity. A very obvious case lies in molecules 1, 3 and 4, con-
tained in the cluster 1. These have very similar physicochemical
and quantum chemical properties and, in fact, it is identified in the
dendrogram. A similar case exists between molecules 20, 21 and
22 with a 4, 9, 10-dien-3-one group and the difference is the 17�-
hydroxyl, 17�-methyl and 17�-ethyl groups, respectively. This can
be early detected in the cluster 2 from simple inspection of Fig. 3.
Compounds 11 and 12 also showed high similarity, where the only
difference being a single 7�-methyl group in the compound 12. The
compounds 15, 16 and 26 with a hydroxyl group (–OH) in the atom
3 are contained in the cluster 3 next to the compound 18.

Furthermore, this procedure allows selecting compounds for the
training and test sets, in a representative way, in all level of the
linking distance. The main idea of this procedure comprises mak-
ing a partition of chemicals into several statistically representative
classes of compounds. This procedure ensures that any chemical
class (as determined by the clusters) will be represented in both
compound series. This rational design of training and predicting
series allowed us to design both sets that are representative of
the whole “experimental universe”. Moreover, the selection of the
training and prediction sets was performed by taking, in a random
way, compounds belonging to each cluster. From these 26 steroids,
21 (80% of the data) were chosen at random to form the train-
ing set. The great structural variability of the selected training set
makes possible the discovery of leading compounds. The remaining
steroids composed of 6 molecules (20% of the data) were prepared
as a test set for the external cross-validation of the models. These
chemicals have not been used in the development of the QSAR mod-
els. Fig. 4 illustrates the above-described procedure in which CA
was performed to select a representative sample for the training

and test sets.
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Table 4
Calculated values and residuals from the anabolic activity relate with the levator ani
muscle weight.

Compounda log (1/LA)Cal.b Residualc

1 1.69 0.41
2 1.74 0.20
3 1.85 0.11

4* 1.88 −0.28
5* 1.86 0.44
6 2.37 −0.15
7 2.48 0.02
8 2.09 −0.24
9 2.11 −0.27

10* 1.98 −0.09
11 1.39 0.37
12 2.03 0.06
13 1.61 −0.01
14 1.37 −0.22

15* 2.63 0.22
16 2.78 −0.18
17 1.50 −0.20
18 2.11 −0.20
19 1.61 −0.20
20 1.89 0.11
21 2.05 0.06
22 2.18 −0.18
23 2.77 −0.07

24* 3.02 0.28
25 2.62 0.08
26 1.84 −0.14

Chemicals marked with asterisk are the steroids of the test set.
a Number of compounds given in Table 1 and Fig. 2.
b Values of anabolic activity calculated by Eq. (3).
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Table 5
Calculated values and residuals from andorgenic activity relate with the ventral
prostate weight.

Compounda log (1/VP)Cal.
b Residualc

1 1.18 0.52
2 1.19 0.61
3 1.16 0.76

4* 1.13 −0.66
5* 1.52 0.08
6 2.18 0.04
7 2.17 0.17
8 1.12 0.28
9 1.11 0.04

10* 1.14 −0.66
11 1.15 0.51
12 2.15 −0.07
13 1.14 −0.14
14 0.52 0.33

15* 1.56 0.14
16 1.58 −0.28
17 0.53 −0.23
18 1.27 −0.27
19 1.46 −0.23
20 1.35 −0.35
21 1.34 0.14
22 1.34 −0.34
23 2.79 −0.09

24* 2.90 0.40
25 2.91 −0.21
26 1.38 −0.61

Chemicals marked with asterisk are the steroids of the test set.
a

(17) (n = 3, see Fig. 1) were removed from the database. The train-
c Residual = log (1/LA)Exp. − log (1/LA)Cal.

.2. Development and validation of the QSAR models

The training set of 19-nor-testosterone derivatives includes a
et of compounds formed by the steroids: [1–3], [6–9], [11–14],
16–24] and 26 (n = 21, see Fig. 2 and Table 1 for more details). Eq.
3) shows both the variables set from the GA and the best model
f anabolic activity. In order to compare the external predictions
orresponding to Eq. (3), the steroids: 4, 5, 10, 15, and 25 were
hosen as test set (n = 5, see Fig. 2 and Table 1 for more details). The
btained QSAR model is given below together with the statistical
arameters of both learning and prediction sets.

og
(

1
LA

)
= −0.28(±0.13)�EL−H + 25.21(±7.94)q7

− 16.55(±11.93)q12 + 5.56(±2.26) (3)

n = 21, R2 = 0.83, q2 = 0.77, s = 0.19, F = 27.66, p < 0.001.
Test set: n = 5, R2 = 0.83, s = 0.30, F = 13.70.
The R2 indicates that the model explains 83% of the variance for

he experimental values of log (1/LA). The model has q2 = 0.77. This
alue (q2 > 0.5) can be considered as a proof of the high predictive
bility of the model as well as the good prediction of the test set
R2 = 0.83). Table 4 shows the correlation between the observed and
redicted anabolic activities from Eq. (3).

The VP and SV training set of 19-nor-testosterone derivatives
onsists of the following chemicals: [1–3], [6–9], [11–14], [16–24]
nd 26 (n = 21, see Fig. 2 and Table 1 for more details). Eqs. (4) and
5) show both, the variables set from the GA and the best models
f androgenic activity. In order to compare the predictive ability of
P and SV steroid-based models we used a test set composed of

ine compounds 4, 5, 10, 15 and 25, (see Fig. 2 and Table 1 for more
etails). The QSAR models obtained for description of VP and SV,
s well as their statistical parameters of both training and test sets,
Number of compounds given in Table 1 and Fig. 2.
b Values of androgenic activity calculated by Eq. 4.
c Residual = log (1/VP)Exp. − log (1/VP)Cal. .

are depicted below as Eqs. (4) and (5), respectively:

log
(

1
VP

)
= 14.11(±8.41)q6 + 54.66(±17.53)q7

+ 55.80(±19.01)q9 + 11.34(±2.80) (4)

n = 21, R2 = 0.76, q2 = 0.65, s = 0.34, F = 18.30, p < 0.001.
Test set: n = 5, R2 = 0.86, s = 0.47, F = 21.10.

log
(

1
VS

)
= 14.50(±8.79) q6 + 55.72(±18.32)q7

+ 54.85(±19.87)q9 + 11.39(±2.93) (5)

n = 21, R2 = 0.74, q2 = 0.61, s = 0.34, F = 16.91, p < 0.001.
Test set: n = 5, R2 = 0.92, s = 0.36, F = 31.92.The R2 for Eqs. (4)

and (5) are 0.76 and 0.74, respectively. Therefore, these mod-
els explained 76% and 74% of the variance for the experimental
values of log (1/VP) and log (1/SV). These models also showed
high predictive ability (q2 of 0.65 and 0.61, and R2 of 0.86 and
0.92, respectively). Tables 5 and 6 show the correlation between
observed and predicted values of androgenic activities for Eqs. (4)
and (5), respectively.

In order to design compounds which preserve a high degree
of anabolic activity and a vastly diminished androgenic activ-
ity, AAR values: log (1/LA)/log (1/VP) and log (1/LA)/log (1/SV)
of 19-nor-testosterone steroids were estimated. The AAR values
were quantified using the anabolic and androgenic activities val-
ues shown in Table 1. The training set of (log (1/LA)/log (1/VP))
ratio includes a set of compounds formed by the steroids: 1, 3,
[6–11], 13, 14, 16, [18–23], 25 and 26 (n = 19, see Fig. 2 and Table 1).
The statistical outliers: 17�-ethynyl-19-nor-testosterone (4), 7�-
methylestr-4-en-3, 17-dione (12) and 17�-hydroxy-5�-estr-2-ene
ing set of (log (1/LA)/log (1/SV)) ratio includes a set of compounds
formed by the steroids: 1, 3, 4, [6–9], [11–14], 16, [18–23], 25 and
26 (n = 20, see Fig. 2 and Table 1). The statistical outliers: 4-chloro-
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Table 6
Calculated values and residuals from anabolic activity relate with the seminal vesicle
weight.

Compounda log (1/SV)Cal.
b Residualc

1 1.19 0.24
2 1.20 0.55
3 1.18 0.56

4* 1.15 −0.15
5* 1.56 0.05
6 2.26 −0.10
7 2.26 0.39
8 1.13 0.41
9 1.12 0.14

10* 1.15 −0.67
11 1.16 0.04
12 2.24 −0.06
13 1.16 −0.16
14 0.50 0.35

15* 1.59 0.10
16 1.61 −0.31
17 0.51 −0.21
18 1.28 0.02
19 1.49 −0.26
20 1.35 −0.35
21 1.34 0.14
22 1.35 −0.35
23 2.80 −0.10

24* 2.91 0.39
25 2.92 −0.22
26 1.41 −0.63

Chemicals marked with asterisk are the steroids of the test set.

1
(
d
c
Q
s

E
s
b

E
f
m
t
a
fi
v
a

(
m
1

Table 7
log (1/LA)/log (1/VP) ratio: experimental, calculated values and residuals from Eq.6.

Compounda log(1/LA)/log
(1/VP)Exp.

b
log(1/LA)/log
(1/VP)Cal.

c
Residuald

1 1.23 1.12 0.11
2* 1.08 1.53 −0.45
3 1.01 0.93 0.08
4 3.36 1.47 1.89

5* 1.44 2.62 −1.19
6 1.00 0.80 0.20
7 1.07 0.99 0.08
8 1.32 1.44 −0.12
9 1.61 1.51 0.10

10 1.07 1.26 −0.19
11 1.01 1.24 −0.24
12 3.95 1.66 2.29
13 1.60 1.33 0.27
14 1.36 1.43 −0.07

15* 1.67 2.27 −0.59
16 2.00 2.12 −0.12
17 4.32 2.51 1.81
18 1.90 1.58 0.33
19 1.15 1.18 −0.03
20 2.00 1.91 0.09
21 1.43 1.71 −0.27
22 2.00 1.70 0.30
23 1.00 1.30 −0.30

24* 1.00 1.65 −0.65
25 1.00 1.40 −0.40
26 2.18 1.99 0.20

Chemicals marked with asterisk are the steroids of the test set.
a Number of compounds given in Table 1 and Fig. 2.
b

a Number of compounds given in Table 1 and Fig. 2.
b Values of androgenic activity calculated by Eq. 5.
c Residual = log (1/SV)Exp. − log (1/SV)Cal. .

7�-acetoxyestr-4-en-3-one (10) and 17�-hydroxy-5�-estr-2-ene
17) (n = 2, see Fig. 2) were removed from the database. Outlier
etection was carried out using the following standard statisti-
al tests: residual, standardized residual and Cooks distance. The
SAR models obtained for the AAR apparently do not describe the

tereo-electronic effect of these molecules.
In order to compare the external predictions corresponding to

qs. (6) and (7), the steroids: 2, 5, 15, and 24 were chosen as test
et (n = 4, see Fig. 1 and Table 1 for more details). The MDs selected
y the AG are shown in Eqs. (6) and (7):

log(1/LA)
log(1/VP)

= 0.41(±0.33)� − 16.07(±11.50) q13 +

2.08(±0.78)U + 9.27(±2.75) (6)

n = 19, R2 = 0.70, q2 = 0.54, s = 0.24, F = 12.47, p < 0.001.
Test set: n = 4, R2 = 0.66, s = 0.22, F = 8.60.

log (1/LA)
log (1/SV)

= 9.74(±8.69)q11 + 0.84(±0.53)U + 6.58(±2.53) (7)

n = 20, R = 0.58, q = 0.35, s = 0.27, F = 11.30, p < 0.001.
Test set: n = 4, R2 = 0.72, s = 0.19, F = 11.44.
The best regression QSAR model for any AAR was obtained by

q. (6). The R2 indicates that the model explains 70% of the variance
or the experimental values of log (1/LA)/log (1/VP) ratio and this

odel has an adequate q2 = 0.54. This value (q2 > 0.5) and R2 of the
est set (R2 = 0.70) can be considered as a proof of the high predictive
bility of the model. On the other hand, Eq. (7) shows an adequate
tness (R2 = 0.58) but very low predictive power (q2 = 0.35). This
alue of q2 < 0.5 can be considered as a proof of the low predictive
bility of the model.
Table 7 shows experimental and calculated log (1/LA)/log
1/VP) ratio values as well as residuals from the best regression

odel (Eq. (6)). The model predicts that the 17�-cyclopropyl-
7�, 3�-hydroxy-4-estrene (26) compound present the highest
Experimental values of the effective log (1/LA)/log (1/VP) ratio.
c Values calculated by Eq. (6).
d Residual = log(1/LA)/log (1/VP)Exp. − log(1/LA)/log(1/VP)Cal. .

anabolic–androgenic ratio (AAR) and the 7�-methyl-17�-acetoxy-
estr-4-en-3-one (6) the lowest AAR.

3.3. Driving forces for biological activities of 19-nor-testosterone
Steroids

Interrelations of MDs make difficult the interpretation of the
QSAR model. Therefore, it is well known that the interrelatedness
among the different MDs results in highly unstable correlation coef-
ficients, which makes it impossible to know the relative importance
of an index and underestimates the utility of the regression coeffi-
cient in a model [48]. However, in some cases strongly interrelated
descriptors can enhance the quality of a model, because the small
fraction of a descriptor that is not reproduced by its strongly inter-
related pair can provide positive contributions to the modeling. On
the other hand, the coefficients of the QSAR model based on orthog-
onal descriptors are stable to the inclusion of novel descriptors,
which permit to interpret the regression coefficients and to evalu-
ate the role of individual molecular fingerprints in the QSAR model.
Calculated quantum and physicochemical molecular descriptors
were subjected to an intercorrelation study (see Table 3). Corre-
lation between variables included in each QSAR model was rather
low, indicating the different information contents of each term in
these equations.

The QSAR model of Eq. (3) has three types of electronic molecu-
lar descriptors: �EL–H, q7 and q12. These three properties are most
responsible for the anabolic activity expressed by log (1/LA). Neg-
ative �EL–H terms indicate that the high values of �EL–H produce
unfavorable anabolic effects. It is observed that the presence of a 4,
9, 11-triene group (compounds 23, 24 and 25, Fig. 5) decreases the

�EL–H value and increases the anabolic activity (Table 2). The neg-
ative coefficient of q12 descriptor indicates that negative charge in
C-12 (ring C) increases the activity of these compounds (see Eq. (3)).
Moreover, an electron-donating substituent in the C-7 produces an
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Fig. 5. Graphic representation of the energy difference between the L

nfavorable anabolic effect. The charge value of atom C-7 is largely
ependent on the substitution pattern of ring B. It is observed that
he presence of groups 7�-methyl (compounds 6, 7, and 12) and
-ene (compounds 15 and 16) in the ring B increases the positive
harge value on C-7 and increases the binding affinity for anabolic
eceptor.

Models for androgenic activity (Eqs. (4) and (5)) also explain
he steroid–receptor interaction. It is mostly due to the biological
ctivity expressed by electronic descriptors (q6, q7 and q9). Again,
he charge value of C-7 has positive contribution to the androgenic
ctivity. These equations explain the increase in the androgenic
ctivity related to the increase in the positive charge of atoms 6
ring B) and 9 (fusion point between rings B and C). Therefore,
ositive q6, q7 and q9 values indicate that electron-withdrawing
ubstituent in the carbons 6, 7 and 9 correlated with a higher andro-
enic activity.

Finally, Eq. (6) shows that the AAR is favorable with the increase
n the negative charge of atom 13 (fusion point between rings C and
), high values of � and U. The charge in atom 13 should mostly be

nfluenced by the substituent in fusion point between rings C and
.

.4. The applicability domain of the QSAR models

A crucial problem in chemometric and QSAR studies is the
efinition of the applicability domain (AD) of a classification or
egression model. Even robust, significant and validated QSAR
odel will not be used in order to predict the modeled property

or the entire universe of chemicals. In fact, only the predictions
or chemicals falling within this domain can be considered reliable
nd not model extrapolations [49]. The AD is a theoretical region
n chemical space, defined by the model descriptors and modeled
esponse, and thus by the nature of the chemicals in the training set,
s represented in each model by specific MDs. Moreover, AD of the
SAR model is the range within which it tolerates a new molecule

49].

It is generally acknowledged that QSAR models are only valid

ithin the same domain for which they were developed. In fact,
ven when the models are developed on the same chemicals, the
D for new chemicals can differ from model to model, depending on
nd the HOMO (�EL–H) for the most active compounds: 23, 24 and 25.

the specific descriptors. However, model validation is sometimes
neglected and the application domain is not always well defined
[49]. The purpose of this section is to outline how validation and
domain definition determine in which situation it is correct to use
the model. The aim of the present work was to develop a model
for predicting AAR of steroids at early stages of drug discovery and
development. Accordingly, we only selected 19-nor-testosterone
analogues. Consequently, it cannot extrapolate the use of these
models to other kinds of class-steroids making uncertain predic-
tion in conditions that are very different to those fixed for derive the
model [50]. It is important to note that in multiple predictor mod-
els, simple single-variable range checks are not sufficient to verify
AD. At present, there are several approaches to evaluate the AD of
QSAR models. For RLM, a multiple predictor problem with normally
distributed data, the distance-based measure, as leverage is one
of most used. Through the leverage approach [51] it is possible to
verify whether a new chemical will lie within the structural model
domain. The leverage h [52] of a compound measures its influence
on the model. Namely, leverage used as a quantitative measure of
the model AD is suitable for evaluating the degree of extrapolation,
which represents a sort of compound distance from the experimen-
tal model space. Leverage values can be calculated for both training
compounds and new compounds. In the first case, they are useful
to find training compounds that influence model parameters to a
marked extent, resulting in an unstable model. In the second case,
they are useful to check the applicability domain of the model [49].
The warning leverage, h*, is a critical value or cut-off to consider the
prediction made for the model for specific compounds in data set.
The leverage h* can be defined as 3 × p′/n, where n is the number of
training chemicals and p′ is the number of model parameters plus
one [49]. Prediction should be considered unreliable for compounds
of high leverage value (h > h*). A leverage greater than the warn-
ing leverage h* means that the compound-predicted response can
be extrapolated from the model, and therefore, the predicted value
must be used carefully. Only predicted data for chemicals belonging
to the chemical domain of the training set should be proposed.
The AD of a QSAR model is visualized by the Williams plot, a
double-ordinate Cartesian plot of standardized residuals (Y-axis)
versus leverage (hat diagonal; X-axis) values for each compound of
the training and test set. From this plot the AD is established inside



44 Y.M. Álvarez-Ginarte et al. / Journal of Steroid Biochemistry & Molecular Biology 126 (2011) 35–45

Fig. 6. William plots of Eqs. (3)–(6) are shown in (A)–(D), respectively. Black and red points represent the steroids of the training and test series, respectively. Outlier
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ompounds [4, 12 and 17] are points with standardized residual greater than two st
han the threshold or cut-off value h = 0.44. (For interpretation of the references to

square area within ±2. SIGMA (SIGMA, standard deviation) band
or residuals and a leverage threshold h*. The Williams plot can
e used for an immediate and simple graphical detection of both
he response outliers (i.e., compounds with standardized residual
reater than two standard deviation unit, >2�) and structurally
nfluential chemicals in a model (h > h*). For instance, Fig. 6(A–D)
hows William plots of Eqs. (3)–(6), respectively. As noted from
ig. 6, all used steroids lie within this area. In Fig. 6A, the compound
has higher standardized residuals than the threshold but shows

everage within the limits. The structure of this steroid is very close
o other compounds of the training set. Outliers compounds (4, 12
nd 17) were detected in Fig. 6D. These compounds slightly exceed
he critical hat values of standardized residual greater than two.
nfluential chemical [16] point with leverage values higher than
he threshold or cut-off value h = 0.44 is also detected. However,
his model can be used with high accuracy in these AD.

. Conclusions

In the present report, predictive QSAR models of the anabolic
nd androgenic activities of the 19-nor-testosterone steroids family
ere carried out by employing quantum and physicochemical MDs,

s well as, a GA for the selection of variables. The MDs included
n the reported models allow the structural interpretation of the
iological process, making evident the main role of the electronic

roperties in this steroid family. The selected QSAR equation for
nabolic and androgenic activities explains the steroid–receptor
nteraction mainly due to the biological activities expressed by the
lectrostatic properties.
d deviation unit. Influential chemical [16] is point with high leverage values higher
n this figure legend, the reader is referred to the web version of the article.)

Three electronic descriptors: �EL–H, q7 and q12 are found
mostly responsible for the anabolic activity, of these compounds,
expressed by log (1/LA). Negative �EL–H terms indicate that the
high values of �EL–H produce unfavorable anabolic effects. It is
observed, that the presence of a 4, 9, 11-triene group (compounds
23, 24 and 25) decreases the �EL–H value and increases the anabolic
activity. The negative coefficient of q12 descriptor indicates that
negative charge in C-12 of ring C increases the activity of these com-
pounds (see Eq. (2)). Moreover, an electron-donating substituent in
the C-7 produces an unfavorable anabolic effect. The charge value
of atom C-7 is largely dependent on the substitution pattern of ring
B. The presence of groups 7�-methyl (compounds 6, 7, and 12)
and 5-ene (compounds 15 and 16) in ring B increases the positive
charge value on C-7 and the binding affinity for anabolic receptor.
Values of �EL–H show a correlation better than 0.7. For this rea-
son, we have selected this descriptor and none other descriptors
related with this value: chemical hardness (�), chemical softness
(S) and electrophilicity index (ω). However, our results are accord-
ing with that obtained by Singh et al. [53,54] in QSAR studies on
testosterone and derivatives.

Models for androgenic activity also explain the steroid–receptor
interaction. It is mostly due to the biological activity expressed by
electronic descriptors (q6, q7 and q9). Again, the charge value of C-7
has positive contribution to the androgenic activity. The increasing
in the androgenic activity is related to the increasing in the positive

charge of C-6 (ring B) and C-9 (fusion point between rings B and
C). Therefore, positive q6, q7 and q9 values indicate that electron-
withdrawing substituent in the carbons 6, 7 and 9 are correlated
with a higher androgenic activity.
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For increasing the negative charge of C-13 (fusion point between
ings C and D), high value of molecular dipole moment and high
alue of chemical potential can explain a favorable AAR for these
teroids. The charge on C-13 should be mostly influenced by the
ubstituent in fusion point between rings C and D. Calculated
alues for the AAR predict that the 17�-cyclopropyl-17�, 3�-
ydroxy-4-estrene (26) compound present the highest AAR and
he 7�-methyl-17�-acetoxy-estr-4-en-3-one (6) the lowest AAR
n agreement with the experimental data. Finally, the AD of the
eveloped models was assessed and visualized by Williams plots
s a squared area within ±2.(standard deviation) band for residuals
nd a leverage threshold of h = 0.44.
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